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Abstract. The phonatory process occurs when air is expelled from the lungs through the glottis and the pres-
sure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly
unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on human-
like computational domain and appropriate mathematical model. The work deals with numerical simulation of
air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the
rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included
in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with
a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equa-
tions. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these
cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq
approximation in subglottal and supraglottal area in larynx.

1 Introduction

Large-eddy simulation was proposed in as early as 1963
by Smagorinsky [7]. In LES the large scale motions of tur-
bulent flow are computed directly and small scale motions
(sub-grid scale = SGS) are modelled. LES has significant
reduction in computational cost compared to DNS and is
more accurate than the RANS approach. The large eddies
contain most of the turbulent energy and these eddies are
responsible for most of the momentum transfer and tur-
bulent mixing. The small eddies incline to be isotropic
and homogenous (and therefore the SGS motions should
be easier to model than model all scales within a domain).
Nowadays, LES is promising numerical tool for simulat-
ing realistic turbulent flows. For instance inside the com-
plicated measurable place in human larynx.

2 Mathematical formulation

The Navier-Stokes equations are derived from the conser-
vation laws for mass, momentum and energy. In LES a
low-pass spatial filter is applied to the instantaneous con-
servation equations to formulate equations for large scale
motions (explicit filtering). If the finite volume method
(FVM) is used for solving the instantaneous governing
equations numerically, then there is no need to apply a fil-
ter to the equations explicitly (it is called implicit filtering,
equivalent to convolution with a top-hat filter). The fil-
tered equations in a Newtonian incompressible flow can
be written as

∂iūi = 0, (1)

∂t(ρūi) + ∂ j(ρūiū j) = −∂i p̄ + 2∂ j(µS i j) − ∂ j(τi j), (2)

S i j =
1
2

(∂iū j) + ∂ jūi), (3)

τi j = ρ(uiu j − ūiū j), (4)

where ūi is filtered velocity, ρ is density, µ is molecular
viscosity, S i j is resolved scale strain rate tensor. [10]

In the context of LES τi j is called the subgrid scale
(SGS) Reynolds stress. It plays a role in LES similar to
the Reynolds stress in RANS, but physics that it models
is different. The SGS energy is usually a much smaller
part of the total energy at the turbulent velocity field than
the RANS turbulent energy. Thus a model accuracy may
be less crucial in LES in comparison with RANS. [1] To
model SGS stress tensor we can use eddy-viscosity as-
sumption (Boussinesq’s hypothesis) as follows

τi j = −2µtS i j +
1
3
δi jτll, (5)

where µt is SGS eddy viscosity. If µt is substitute into the
equation (2) then becomes

∂t(ρūi) + ∂ j(ρūiū j) = −∂i p̄ + 2∂ j[(µ + µt)S i j], (6)

and the remaining problem now is how to determine µt.
The Smagorinsky model contains

µt = ρ(Cs∆̄)2S , (7)
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S = (2S̄ i jS̄ i j)
1
2 , (8)

∆ = (∆x∆y∆z)
1
3 , (9)

where CS is the Smagorinsky constant (0.18). [4] The
value gives reasonable results for isotropic turbulence and
for flows near a solid wall it should be 0.1. [10] Never-
theless, this model has shortcomings as for example being
too dissipative. Improvement of this model was suggested
by Germano [3]. In OpenFOAM (OF) the µt is determined
as follows

µt = Ck
√

k∆, (10)

k =

√
−b +

√
b2 + 4ac

2a
, (11)

a =
CE

∆
, b =

2
3

tr(S̄), c = 2Ck∆(dev(S̄ : S̄), (12)

∆ = c′V
1
3

C , (13)

where Ck and CE are model constants (Ck = 0.094, CE =

1.048). Symbol ∆ represents a filter width, c′ is deltaCoeff

(in OF=1) and VC is the volume of the cell.

3 Geometry and mesh

The geometry of the vocal folds was specified by Scherer
[6]. For LES computations, a structural mesh from 400k
volume cells was created and it included 5 cells in the z-
axis (5x 0.2 mm). The one of the important parameter for
testing dynamic mesh (where the vocal folds have two-
degrees of freedom) is maximal non-orthogonality factor.
The analysis of this parametes make sense in the time,
when the vocal folds are in the nearest position to each
other, i.e. t = 0.003 s and the maximal non-orthogonality
factor is 55.14).

Mesh spacings in wall units are commonly used to in-
dicate LES adequacy. Especially the theoretical limits for
LES and DNS are

50 ≤ ∆x+ ≤ 150, ∆y+
wall < 1, 15 ≤ ∆z+ ≤ 40, (14)

10 ≤ ∆x+ ≤ 20, ∆y+
wall < 1, 5 ≤ ∆z+ ≤ 10, (15)

where the x is streamwise direction, the y direction is wall
normal and the z is spanwise and homogeneous. [2] In
this study the y+ for the critical time when the mesh is
maximally deformed is: y+

avg = 1.17, y+
max = 17.29 and in

different time is usually about y+
avg = 0.31, y+

max = 3.29.

Fig. 1: Geometry and mesh

Table 1: Boundary conditions for the velocity u,
kinematic pressure P = (p/ρ) and turbulent kinetic

energy k

region u [=] m.s−1 P [=] m2.s−2 k [=] m2.s−2

Γin from flux 300 2.10−5

Γout
∂u
∂n = 0 0 ∂k

∂n = 0

ΓbVF u =
∂h(x,y)
∂t

∂P
∂n = 0 k = 0

ΓuVF u =
∂h(x,y)
∂t

∂P
∂n = 0 k = 0

Γwall u = 0 ∂P
∂n = 0 k = 0

Table 1 species the boundary condition of this presented
case. Inlet velocity is computed from the flux if it is
applied the condition u.n < 0 and if the u.n > 0 then
u = 0. The function h(x, y) is calculated from (16), where
f = 100 Hz, A1 = A2 = 0.3 mm, η = π/2

w1 = A1sin(2π f + η), w2 = A2sin(2π f ) (16)

4 Numerical solution

In this LES study, central differencing scheme (CDS) is
used for spatial discretization of the diffusive term. The
CDS can be obtained by a Taylor series expansion where
the terms involve derivatives of the second order (higher
are neglected). The second order CDS is non-dissipative
and conservative which is essential for LES. Upwind-
based schemes are not used in LES, because of the pro-
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duction of high numerical dissipation. For spatial dis-
cretization of convective term, a total variation diminish-
ing scheme (TVD) is used. A numerical method is said
to be TVD, if the total variation (TV) is not increased in
time, see (17), where φ is a variable, i is an index of the
node. A monotone scheme is TVD and a TVD scheme is
monotonicity preserving. It does not create any new local
extrema within solution domain. In our case we have used
high resolution scheme, see (18), where the term called the
anti-diffusive flux creates 2nd order of accuracy (which
it decreases numerical diffusion, but also it leads to un-
physical oscillations). To preserve the good properties, i.e.
the stability from the 1st order scheme and the accuracy
from the 2nd order scheme is to multiple the flux limiter ψ
to the anti-diffusive term, see (19), where indexes are D-
downwind (left), C-center, U-upwind (right), f -face (be-
tween C and U) and r f is taken as the ratio of two consec-
utive gradients. [5] In this study was used the flux limiter
of the MUSCL TVD scheme as the discretization scheme
of the convective term, see (20) and CD TVD scheme with
ψ(r f ) = 1 as discretization scheme of the diffusive term.

TV t+∆t =
∑

i

|φt+∆t
i+1 − φ

t+∆t
i | ≤

∑
i

|φt
i+1 − φ

t
i | = TV t (17)

φ f =
1
2

(φD − φC)︸        ︷︷        ︸
CD

= φC︸︷︷︸
upwind

+
1
2

(φD − φC)︸        ︷︷        ︸
anti−di f f usive f lux

(18)

φ f = φC +
1
2
ψ(r f )(φD − φC), r f =

φC − φU

φD − φC
(19)

ψ(r f ) = max(0,min(2r f , (r f + 1)/2, 2)) (20)

For the temporal discretization a second-order back-
ward implicit Euler was used. Since the time steps are
small in LES, it is not essential to use different temporal
scheme than second-order.

5 Results

After one period which is composed from one convergent
and one divergent motion of the vocal folds, this state is
captured on Fig. 2. The velocity field shows the airflow
from subglottal area to supraglottal area (vocal folds are
in divergent position). An air jet in glottal area is formed
on the surface of the right vocal fold margin. The veloc-
ity of an airflow is much lower (circa 50 % lower) than in
the similar study [9] with no turbulent model, because the
effective viscosity (νe f f = ν + νS GS ) is computed higher
in the high shear regions. The velocity is also slightly
lower with 2D Smagorinsky and 2D One-Equation com-
pared with [9]. Detailed studies deal with vocal folds are
also [11] and [8]. On the Fig. 3 the high shear regions are
shown: 1) The shear layer within rima glottidis, 2) The up-
per parts of the sacculus laryngis walls, 3) The peripherals
of large eddies in supraglottal area. In the ideal case the
influence of the mesh the mesh should not be seen.

Fig. 2: Velocity field

Fig. 3: Subgrid scale viscosity field

360



On the Fig. 4 are shown isosurfaces of the Q-criterion
which detect the regions where coherent structures can ex-
ist. If the laplacian of the pressure is positive then the con-
dition about generating the vortex tubes is satisfied. In
the rima glottidis we can recognize the so-called hairpin
horseshoe vortex which is generally formed near the wall
as a result of the Tollmien-Schlichting instability. The leg
of the vortex is in a buffer layer in the longitudinal direc-
tion, the neck and the head of the vortex are also seen.
A regular shape of this kind of vortex is usually an ex-
ception, because the transition of the turbulence regime is
stormy dynamic process in which the shear flow created
from the main flow interact with the neighbouring struc-
tures. This kind of vortices are significant for generating
and self-sustaining the turbulent structures.

The phenomenon in the supraglottal section is the so-
called merging of vortices where these vortices have the
same orientation of rotation and create cirles. The spa-
tial effect of this mechanism is related to pseudoperiodic
disturbances and the energy within the vocal fold domain
is transfered from small eddies via merging to create one
larger eddy (reverse energy cascade). The interactions of
vortex tubes are also captured and it looks like „8”. Two
vortices are connected in the one point and subsequently
disconnected vice versa than how they were connected be-
fore (the so-called bridging).

Fig. 4: Iso-surface Q-criterium

6 Conclusion

In this study, 3D LES case was simulated with Smagorin-
sky SGS model on structured mesh in OpenFOAM
4.1. The weaknesses of this study are following. The
Smagorinsky model overpredicts the dissipation rate and
for further work is highly recommend to use one-equation

SGS model with van Driest damping function and more re-
quirement because of the additional transport equation for
the SGS kinetic energy. Another point for correct 3D mod-
eling is a guarantee fine mesh refinement for wall-resolved
LES in all three directions. Last but not least important
point is initialization of turbulence at inlet. Current in-
flow boundary condition generation methods in LES are
generally two basic categories: the precursor method (an
addition simulation) and synthesis method (random fluc-
tuations at the inlet). This is the main issue of the further
work, because the vocal folds domain is computed from
the pressure difference (not by prescribed velocity).
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