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ABSTRACT:
This article deals with large-eddy simulations of three-dimensional incompressible laryngeal flow followed by

acoustic simulations of human phonation of five cardinal English vowels, /A, æ, i, o, u/. The flow and aeroacoustic

simulations were performed in OpenFOAM and in-house code openCFS, respectively. Given the large variety of

scales in the flow and acoustics, the simulation is separated into two steps: (1) computing the flow in the larynx using

the finite volume method on a fine moving grid with 2.2 million elements, followed by (2) computing the sound sour-

ces separately and wave propagation to the radiation zone around the mouth using the finite element method on a

coarse static grid with 33 000 elements. The numerical results showed that the anisotropic minimum dissipation

model, which is not well known since it is not available in common CFD software, predicted stronger sound pressure

levels at higher harmonics, and especially at first two formants, than the wall-adapting local eddy-viscosity model.

The model on turbulent flow in the larynx was employed and a positive impact on the quality of simulated vowels

was found. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0017202

(Received 20 July 2022; revised 21 January 2023; accepted 24 January 2023; published online 10 February 2023)
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I. INTRODUCTION

Aeroacoustic simulations undoubtedly have strong

potential to be applied in clinical diagnostics, treatment

control, and to support medical education. Regarding this

application, computer analysis can provide highly resolved

three-dimensional (3D) data of the flow and acoustic field

for further studies. Such highly resolved 3D data are infeasi-

ble by in vivo, excised larynx or synthetic vocal fold mea-

surements (D€ollinger et al., 2011; Kniesburges et al., 2011).

Although numerical tools are available, realistic 3D tur-

bulent flow simulations are computationally expensive as

the time-consuming accurate modeling of supraglottal tur-

bulence is essential for flow-induced sound generation

(Mattheus and Br€ucker, 2011). Conventional turbulence

modeling approaches, such as unsteady Reynolds-averaged

Navier-Stokes (uRANS) equations are inadequate for aeroa-

coustics because they do not provide the instantaneous state

of flow quantities. Therefore, in comparison with a direct

numerical simulation (DNS), large-eddy simulation (LES) is

a beneficial balance between the resolution of turbulent

structures and the accurate prediction of turbulent sound

generation mechanism. One of the first studies employing

LES to research laryngeal aeroacoustics was the work of

Suh and Frankel (2007), who combined a compressible LES

and acoustic analogy published by Ffowcs Williams and

Hawkings (1969; FW-H) in a static model of the human

glottis for human voice signal predictions. Mihaescu et al.
(2010) employed the LES capability to study the laryngeal

airflow during phonation and inspiration. Schwarze et al.
(2011) explored an implicit LES, where the intrinsic dissipa-

tion of the numerical method was assumed to act as a

subgrid-scale model. During recent years, simulations have

advanced considerably (Bodaghi et al., 2021; Tokuda and

Shimamura, 2017; Yoshinaga et al., 2017) toward a state

where full-scale aeroacoustic simulations on realistic com-

puted tomography (CT)- or magnetic resonance imaging

(MRI)-based geometries are possible. It can be anticipated

that these simulations could be used for subject-specific pre-

surgical predictions of vocal fold oscillations (Avhad et al.,
2022). These phonation simulations can be useful and help

to improve the voice quality for subjects suffering from vari-

ous vocal fold dysfunctions (Falk et al., 2021; Sadeghi

et al., 2019a,b) or evaluate potential effects on voice pro-

duction affected by an implant insertion in medialization

laryngoplasty (Zhang et al., 2020).

In clinical applications, the reliability of the LES is a

key factor. Hence, further studies on the accuracy of

subgrid-scale models are important. In our previous study

(Lasota et al., 2021), the implementation of a relatively new

subgrid-scale anisotropic minimum dissipation (AMD)

model, published first by Rozema et al. (2015), was

described. The reasons for introducing the given model are

based on the major features of the minimum dissipation

models, which are constructed to confine time derivative of

subgrid-scale energy and satisfy the need to dissipate the

energy of subgrid scales. In addition, the AMD model is
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also derived for anisotropic meshes, which can circumvent

an overuse of corrections needed to retain the stability of the

numerical schemes when severe mesh element deformation

occurs due to vocal fold motion. Rozema et al. (2015) con-

firmed high consistency between results obtained by AMD

and the DNS of turbulent channel flow and between AMD

and the DNS of temporal mixing layers, where both were

performed on anisotropic grids. These flow regimes are

comparable to the flow structures arising inside the larynx.

In this work, AMD is investigated for biological laryn-

geal flows based on the above-mentioned advantages. The

flow field prediction capabilities are assessed and compared

to state-of-the-art LES using a conventional one-equation

(OE) and wall-adapting local eddy-viscosity (WALE)

subgrid-scale turbulence models. Furthermore, the AMD

model’s impact on the aeroacoustic sound generation and

the produced voice signal is evaluated for the first time.

The article is organized into two major sections describ-

ing the computational fluid dynamic (CFD) and computa-

tional aeroacoustic (CAA) parts. CFD in Sec. II describes

models, geometry, boundary conditions, mesh, discretiza-

tion, numerical solution, and results. CAA in Sec. III keeps

the same structure.

II. CFD MODEL

A. Mathematical model

LES is a mathematical concept for modeling turbulent

flows, which deals with flow structures carrying most kinetic

energy, k, i.e., spatially organized large scales. These consist

of two main categories: coherent structures and coherent

vortices of recognizable shape (Lesieur et al., 2005). In the

numerical implementation, the characteristic length, D,

defining a cutoff between resolved large scales and modeled

subgrid scales, is usually given by the mesh grid spacing

(Versteeg and Malalasekera, 2007).

In the LES concept, any flow variable f ðx; tÞ, where

x ¼ ðx1; x2; x3Þ is the spatial coordinate and t is time, may

be decomposed as

f ðx; tÞ ¼ �f ðx; tÞ þ f 0ðx; tÞ; (1)

where �f ðx; tÞ ¼ Gf ðxÞ � f ðx; tÞ ¼
Ð

Gf ðr; x;DÞf ðx� r; tÞdr

is the large-scale component obtained by spatial filtering,

and f 0ðx; tÞ is the small subgrid-scale contribution. Filtered

variables for LES are functions of time and space, unlike the

Reynolds-averaged variables, hence, in LES, ��f 6¼ �f ; f 0 6¼ 0.

The convolution introduced above contains a filter function,

Gf, separating spatial scales. The filter used in this study is

the top-hat filter, which is a common choice in low-order

finite volume methods,

Gf ðr; x;DÞ ¼
1=D3 for jrj � D=2;

0; otherwise:

(
(2)

The continuity and momentum equations for the incom-

pressible fluid flow with LES filtering applied can be written as

@�ui

@xi
¼ 0;

@�ui

@t
þ @

@xj
ðuiujÞ ¼ �

1

q
@�p

@xi
þ � @2�ui

@xj@xj
; (3)

where �ui is the filtered velocity, �p represents the filtered

static pressure, and � is the kinematic molecular viscosity.

The term uiuj is the dyadic product and cannot be expressed

directly (Ferziger, 1998). Modification of the momentum

equation (3) by þð@=@xjÞð�ui�ujÞ yields

@�ui

@t
þ @

@xj
ð�ui�ujÞ ¼ �

1

q
@�p

@xi
þ � @2�ui

@xj@xj
� @sij

@xj
: (4)

The new term on the right-hand-side of Eq. (4) is the diver-

gence of the subgrid-scale turbulent stress tensor,

sij ¼ uiuj � �ui �uj; (5)

and left to be modeled to close the set of equations. Since

the turbulence is not fully understood, a wide range of clo-

sure subgrid-scale models have been introduced, often using

heuristic and ad hoc techniques.

1. OE subgrid-scale model

The OE model derived by Yoshizawa and Horiuti

(1985) computes the transport equation for the turbulent

kinetic subgrid-scale energy, kSGS, such that

@kSGS

@t
þ@�ujkSGS

@xj
� @

@xj

 
ð�þ�tÞ

@kSGS

@xj

!
¼�sij

�Sij�C�
k

3=2
SGS

D
;

(6)

where C� ¼ 1:048 is the model constant, �Sij is the resolved

rate-of-strain tensor (symmetric part of the velocity gradient

tensor), and �t is the turbulent viscosity.

Unlike the Smagorinsky model (Smagorinsky, 1963),

which disregards the first three terms in Eq. (6), OE also

considers the history effects for kSGS. The production term,

�sij
�Sij, modeling the decay of turbulence from the resolved

scales to the subgrid scales via the energy cascade, is

approximated by

�sij
�Sij ¼ 2�t

�Sij
�Sij: (7)

OE relies on the subgrid-scale eddy viscosity,

�O
t ¼ C�D

ffiffiffiffiffiffiffiffiffi
kSGS

p
; (8)

where C� ¼ 0:094 due to the Kolmogorov law.

Neither the Smagorinsky nor the OE model can repro-

duce the laminar to turbulent transition, and both tend to

overpredict the production rate and, thus, the turbulent vis-

cosity in free shear layers and near the walls. This is caused

by the fact that the term �Sij
�Sij is large in the regions of pure

shear because it is only related to the rate-of-strain, �Sij, and

not to the rate-of-rotation, �Xij (Lesieur et al., 2005).
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2. WALE subgrid-scale model

The inaccuracy concerning free shear and boundary

layer treatment, caused by the OE model, can be alleviated

by using the WALE model (Nicoud and Ducros, 1999).

WALE is able to model accurately turbulent structures with

strain or rotation rate or even both. Thanks to this behavior,

the pure shear flow located near solid boundaries will cause

the eddy-viscosity to vanish (Nicoud and Ducros, 1999).

The turbulent viscosity computed by WALE is defined as

�W
t ¼ CkD

ffiffiffiffiffiffiffiffiffi
kW

SGS

q
; (9)

where the turbulent energy of subgrid scales, kW
SGS, is

kW
SGS ¼

C2
wD

Ck

� �2 ðsd
ijs

d
ijÞ

3

ð�Sij
�SijÞ5=2 þ ðsd

ijs
d
ijÞ

5=4
� �2

: (10)

The model constants are set to Cw ¼ 0:325 and Ck ¼ 0:094,

and sd
ij is the traceless symmetric part of the square of the

velocity gradient. WALE accounts for the rate of rotation in

the computation of Eq. (9) and, thus, the turbulent viscosity

tends to zero near walls. Hence, it is not necessary to use

any ad hoc damping methods.

3. AMD subgrid-scale model

The main objective of the model is to ensure that the

energy of subgrid scales, kSGS, is not increasing,

@t

ð
XD

1

2
u0iu
0
i dx � 0: (11)

AMD was derived in Rozema et al. (2015) with modified

Poincar�e inequality addressing the grid anisotropy. If sub-

grid scales are assumed to be periodical on the filter box,

XD, it is possible to apply the Poincar�e inequality and, thus,

define the upper bound of kSGS such that

ð
XD

1

2
u0iu
0
i dx � C

ð
XD

1

2
ð@iujÞð@iujÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{R1

dx: (12)

The term R1 in Eq. (12) corresponds to the velocity gradient

energy, and C is the Poincar�e constant, C ¼ ðD=pÞ2, for the

LES filter of width D.

The AMD model can sidestep the dependence of the

model constant on D by using the modified Poincar�e
inequality,

ð
XD

1

2
u0iu
0
i dx � CA

ð
XD

1

2
ðDxi@i|ffl{zffl}

R3

ujÞðDxi@iujÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{R2

dx; (13)

where the filter box, XD, has dimensions Dx1; Dx2, and Dx3,

and CA is the modified Poincar�e model constant. The term

R2 is the scaled velocity gradient energy and R3 is the

scaled gradient operator. The inequality (13) demonstrates

that the subgrid energy is confined by imposing a bound on

the term R2. Time derivative is applied on the term R2, and

the evolution equation of R2 on the filter box is expressed as

@t
1

2
ðDxi@iujÞðDxi@iujÞ

� �

¼ �ðDxk@kuiÞðDxk@kujÞSij

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{R4

� ð� þ �A
t ÞDxk@kð@iujÞDxk@kð@iujÞ þ @ifi; (14)

where the term R4 is the production of the scaled velocity

gradient energy. The following inequality in Eq. (15)

ensures that the AMD model predicts sufficient dissipation

to stop the production of scaled velocity gradient energy,

R4: ð
XD

R4 dx � �A
t

CA

ð
XD

ð@iujÞð@iujÞ dx; (15)

where the minimum dissipation effect is ensured by

satisfying

�A
t ¼ CA

max

ð
XD

� ðDxk@kuiÞðDxk@kujÞSijdx; 0

� 	
ð

XD

ð@lumÞð@lumÞ dx
: (16)

Integrals in Eq. (16) can be approximated by the mid-point

rule, and the turbulent viscosity for AMD, �A
t , results in a

more practical form,

�A
t ¼ CA

maxf� ðDxk@kuiÞðDxk@kujÞSij

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{R4

; 0g
ð@lumÞð@lumÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

R5

; (17)

where the terms in vector notation are

R4 ¼ ðDxruÞ � ðDxru>Þ : S; R5 ¼ ðruÞ : ðruÞ: (18)

The AMD model was implemented into the

OpenFOAM code as the LAAMD library.1

Based on decaying grid turbulence tests, the value of the

constant, CA, in Eq. (17) is recommended with respect to the

order of discretization of Navier-Stokes equations, which

were tested on decaying grid turbulence cases. Rozema et al.
(2015) has concluded that AMD gave the best results with

CA¼ 0.3 for a central second-order scheme and CA ¼ 0:212

for a fourth-order scheme. A recent study by Zahiri and

Roohi (2019) states an optimal value of the constant CA

¼ 1=
ffiffiffi
3
p
¼ 0:577 based on various test cases. Lasota (2022)

performed his own tests with model constants, CA ¼ 0:3 and

CA ¼ 0:57735, on cases with turbulent flow in a planar chan-

nel and periodic hill. Based on better agreement with velocity

profiles obtained by DNS or experiments, CA ¼ 0:3 was
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chosen as the model constant for turbulence modeling in the

larynx.

Rozema et al. (2015) has also shown that after a Taylor

expansion of sij in Eq. (5), consistency between AMD and

the exact subgrid-scale stress tensor, sij, can be proved.

After Taylor expansion of the eddy dissipation of the exact

subgrid-scale stress tensor, sijSij, consistency with R5 in Eq.

(17) can be also proved. If the exact eddy dissipation gives

zero dissipation, then the term R5 gives zero dissipation as

well. This means that the AMD model can be switched off

for flows where the exact eddy dissipation is vanishing.

Thus, the AMD model also switches off when no subgrid

energy is created (Rozema et al., 2015; Vreugdenhil and

Taylor, 2018).

B. Geometry and boundary conditions

The geometry of vocal folds is based on the M5 para-

metric shape by Scherer et al. (2001); see Fig. 1. The false

vocal folds were specified according to data published by

Agarwal et al. (2003). The geometrical model is 3D, having

a square cross section at inlet 12� 12 mm. Details can be

found in �Sidlof et al. (2015).

The boundary conditions for the CFD model are summa-

rized in Table I. The flow is driven by constant pressure dif-

ference, Pk ¼ �p=q ¼ 300 m2=ss, between the inlet Cin and

outlet Cout. The velocity on Cin and Cout is computed from

the flux. Turbulence initialization at inlet is not used because

turbulent intensity upstream of the glottis is low and the flow

at inlet can be considered laminar (Lasota and �Sidlof, 2019).

On the moving boundaries, CbVF and CuVF, the flow

velocity is equal to the velocity of the moving vocal fold sur-

face, given by the function hðx; tÞ. The function hðx; tÞ based

on the sinusoidal displacement, w1;2 ¼ A1;2 sin ð2pfot þ n1;2Þ,
ensures the vibrating motion of vocal folds in the medial-

lateral (y) direction with two degrees of freedom. In the cur-

rent simulation, the vocal folds oscillate symmetrically with

a frequency fo¼ 100 Hz, amplitudes at the superior and infe-

rior vocal fold margin are A1;2 ¼ 0:3 mm, and the phase dif-

ference is n1 � n2 ¼ p=2 between the inferior and superior

vocal fold margin. During vocal fold oscillation cycle, the

medial surface convergence angle, w=2 (see Fig. 1), alter-

nates between 610�. In this study, the oscillation of the vocal

folds allows closing/opening the glottal gap, g, in the range

0.42–1.46 mm.

C. Mesh and discretization

In wall-bounded flows, the presence of solid walls fun-

damentally influences the flow dynamics, turbulence genera-

tion, and transport in the near-wall regions due to significant

viscous stresses. The accuracy of the numerical simulation

is, thus, closely related to the grid resolution near the fixed

walls. According to the classification by Pope (2000), LESs

of wall-bounded flows can be classified as large-eddy simula-

tions with near-wall resolution (LES-NWR) with a grid suffi-

ciently fine to resolve 80% of the turbulent energy in the

boundary layer, and large-eddy simulation with near-wall

modeling (LES-NWM), which employs a modeling approach

similar to Reynolds-averaged Navier-Stokes (RANS) in the

near-wall region. For these simulations, an important param-

eter is the wall unit, yþ ¼ usy=�, where us is the friction

velocity and y is the dimensional distance in normal direction

from the wall. Using the same normalization, xþ and zþ

denote the dimensionless streamwise and spanwise distances,

respectively. Wall units are also commonly used to indicate

LES adequacy. According to Georgiadis et al. (2010) and

Jiang and Lai (2016), in LES-NWR, the theoretical limits for

the grid spacing adjacent to the wall are 50 � xþ � 150;
yþ < 1 and 15 � zþ � 40, with at least 3–5 gridpoints

for 0 < yþ < 10. The computational mesh in the current

CFD simulation is block structured to capture well the

boundary layer and consists of 2.2 M hexahedral elements

(Lasota et al., 2021). An open-source 3D finite volume mesh

generator, blockMesh (part of OpenFOAM), was used to

build the mesh. The mesh deforms in time due to vocal fold

oscillation. On the boundary, CbVF, at the critical time when

the vocal folds are maximally adducted were evaluated val-

ues yþavg ¼ 1:77; zþ ¼ 14 and xþ ¼ 8.

The Navier-Stokes equations were discretized using the

collocated cell-centered finite volume method. Fletcher

(2012) demonstrated that even-ordered derivatives in the

truncation error are associated with numerical dissipation,

and odd-ordered spatial derivatives are associated with the

numerical dispersion in the solution. Ideally, LES

FIG. 1. (Color online) Mid-coronal (x-y) section of the CFD domain.

Divergent (and also starting) position of vocal folds during phonation is

shown. The z-normal (front and back) boundaries belong to Cwall.

TABLE I. Boundary conditions for the filtered flow velocity, �u, and static

pressure, �p. The symbol n is the unit outer normal and hðx; tÞ is the pre-

scribed displacement of the vocal folds.

�u ðm=sÞ �p ðPaÞ

Cin �u ¼ 0 if �u � n < 0; 350

r�u � n ¼ 0 if �u � n > 0

Cout �u ¼ 0 if �u � n < 0; 0

r�u � n ¼ 0 if �u � n > 0

CbVF; CuVF �u1 ¼ 0; �u2 ¼ @thðx; tÞ; r�p � n ¼ 0

�u3 ¼ 0

Cwall �u ¼ 0 r�p � n ¼ 0

J. Acoust. Soc. Am. 153 (2), February 2023 Lasota et al. 1055

https://doi.org/10.1121/10.0017202

https://doi.org/10.1121/10.0017202


simulations should use schemes with low numerical dissipa-

tion. The non-dissipative central differencing scheme, which

was applied in this study, allows an accurate representation

of the changing flow field (Launchbury, 2016). The discreti-

zation of the diffusion term is split into an orthogonal and

cross-diffusion term using a procedure described in Jasak

(1996). Unlike the discretization of the temporal, convec-

tive, and orthogonal parts of the diffusive term, the non-

orthogonal correctors are treated explicitly.

D. Numerical solution

CFD simulations were run in parallel on the computational

cluster Charon [Metacentrum NGI (National Grid

Infrastructure)—Technical University of Liberec, using 20 Intel

Xeon Silver 4114 cores; Santa Clara, CA] and SGI (silicon

graphics based on Intel processors) Altix UV (ultraviolet) 100

supercomputer Fox (Computing center of the Czech Technical

University in Prague, using 20 Intel Xeon Nehalem cores).

To have sufficient resolution in the spectrum of the

aeroacoustic signal, a sufficiently long simulation time of 20

periods of vocal fold vibration is needed (t ¼ 0:2 s). For

these settings, one CFD simulation required 27–37 days

(about 15 000 core-hours of computational time).

E. CFD results

In this part, CFD simulations using different turbulence

modeling approaches are presented; see Table II. The CFD

model validation performed on the periodic hill and

backward-facing step is reported in Lasota (2022).

1. Laryngeal flow rate

Figure 2 shows the glottal opening and flow rates during

the last four simulated cycles of vocal fold oscillation.

The time, tN, corresponds to the instant when the inferior

margins of the vocal folds approach most and reduce the

glottal opening to 5:58 mm2 (g ¼ 0:465 mm). Time instant,

tC, is the maximum approach of the superior vocal fold

margins, where the glottal opening drops to 4:98 mm2 (g
¼ 0:415 mm). The third time instant, tO, corresponds to the

maximum glottal opening of 17:51 mm2 (g ¼ 1:459 mm).

The subgrid-scale models affected the flow rates Q [l/s]

(see Fig. 2): the predicted peak flow rate in the laminar case

is higher than that in the OE, WALE, and AMD subgrid-

scale models by 16.76%, 5.26%, and 9.3%, respectively. This

is caused by the different values of the turbulent viscosity, �t,

which adds to the molecular viscosity and limits the flow rate

through the glottal constriction. The laminar model does not

capture the influence of small-scale turbulence, which corre-

sponds to �t ¼ 0. The WALE and OE compute with nonzero

turbulent viscosity, with the latter significantly higher due to

the already mentioned deficiency of the OE, which overesti-

mates the turbulent viscosity near the vocal fold surfaces.

The minimum and maximum flow rates are 0:122 l=s by

using OE and 0.358–0.434 l/s by using the WALE and LAM

models, respectively. The peak flow rate predicted by the

AMD model occurs slightly sooner than in other simulations.

2. Vorticity field

Vorticity (x ¼ r� �u) is commonly used for characteriz-

ing turbulent structures in cases with no entrainment rotation.

The vorticity fields reveal the shear layers, where vortices

are shed as a consequence of Kelvin-Helmholtz instability.

The vortices may undergo successive instabilities, leading to

a direct kinetic-energy cascade toward the small scales.

Figure 3 shows vorticity fields presented in the mid-

coronal plane (x-y). The supraglottal jet deflects stochasti-

cally toward either of the ventricular folds. This behavior is

not a consequence of the subgrid-scale model, it is caused

by the bistability of the flow in this symmetric geometry

(Erath and Plesniak, 2010; Lodermeyer et al., 2015).

Detailed analysis of the vorticity within the glottal region

shows that the average value of vorticity in the glottal region

is similar for all of the subgrid-scale models.

Figure 4 shows a complementary view on the magni-

tude of the vorticity vector, jxj, in the midsagittal plane

(x-z). The simulation with the AMD model predicts low vor-

ticity near the glottis. The absence of vorticity may imitate

the situation in the realistic larynx where the jet is frequently

stopped and renewed and, thus, the turbulent eddies are

forced to be dissipated.

3. Turbulent viscosity field

The effect of the unresolved turbulent subgrid scales on

the resolved scales is carried by the turbulent viscosity, �t, rep-

resented by Eq. (8) for �O
t , Eq. (9) for �W

t and Eq. (17) for �A
t .

TABLE II. Overview of the CFD simulations.

Case Type SGS model Cluster Wall-time

LAM Laminar — Charon 27 days 13 h

OE LES OE Charon 34 days 5 h

WALE LES WALE Charon 37 days 13 h

AMD LES AMD Fox 34 days 18 h

FIG. 2. (Color online) Glottal area waveforms (GAW) and flow rates, Q,

during four oscillation cycles. Time instants for further analysis,

tN ¼ 0:1900 s; tC ¼ 0:1927 s, and tO ¼ 0:1963 s.
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Figure 5 shows that the turbulent viscosity predicted by

the simulation with the OE model is very high in regions of

pure shear, especially within the glottis. This is probably the

reason why the simulation with the OE model usually pre-

dicted the lowest intraglottal velocity. In contrast to this,

WALE and AMD subgrid-scale models predicted consider-

ably lower turbulent viscosity in the shear layers at tC. The

fields computed by the AMD model seem to be similar to

fields computed by WALE with spots of gently higher tur-

bulent viscosity at tC. The other situation occurs at tO when

the turbulent viscosity predicted by the AMD model is

around 2� higher than that predicted by OE and 5� higher

than that predicted by WALE.

Figure 6 shows turbulent viscosity fields in the midsagittal

plane. The simulation with OE predicted 2� higher turbulent

viscosity located at the vicinity of the inferior margin of the

vocal folds than that at others. The narrow barrier of turbulent

viscosity at tN in the case with AMD reduced the flow rate just

by 0.8% (1 ml/s) compared to the case with WALE.

III. CAA MODEL

A. Mathematical model

The CAA model is employed after the CFD simulation is

completed and the results are stored on the hard disk. The

CAA model is based on the scalar perturbed convective wave

equation for the acoustic potential, wa (H€uppe et al., 2014),

1

c2
0

D2wa

Dt2
�r � rðwaÞ ¼ � 1

q0c2
0

Dpic

Dt
; (19)

FIG. 3. (Color online) Vorticity fields, jxj, in the mid-coronal plane in

range (0,30 000) (1/s).

FIG. 4. (Color online) Vorticity fields, jxj, in the midsagittal plane in range

(0,30 000) (1/s).

FIG. 5. (Color online) Turbulent viscosity, �t ðm2 s�1Þ, in the mid-coronal

plane at tC and tO.
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where D=Dt ¼ @=@tþ u0 � r is the material derivative. The

overbars (�) from the LES filtering were dropped for simplic-

ity. The speed of sound, c0 ¼ 351:31 m=s, and ambient den-

sity, q0 ¼ 1:1493 kg=m3, correspond to the temperature of

exhaled air of 34 �C (Anghel and Iacobescu, 2013). The

right-hand-side term of Eq. (19) is the aeroacoustic sound

source, computed from the incompressible pressure, pic,

obtained from the CFD simulation. Finally, the acoustic

pressure can be calculated using the relation

pa ¼ q0Dwa=Dt. In our case, there is no background flow,

u0, in front of the lips and within the upper part of the vocal

tract. Therefore, pa ¼ q0@w
a=@t can be used because the

convective part can be neglected. More details on the CAA

model can be found in Lasota (2022).

B. Geometry, mesh, and boundary conditions

Figure 7 shows the geometry used for aeroacoustic sim-

ulations of vowel /A/, where they are (from left to right) the

perfectly matched layer (PML) with a thickness of 0.3 cm at

the inlet, larynx with vocal folds, and false vocal folds

(2 cm), vocal tract (vowels /A, o/, 17.46 cm; /u/, 18.25 cm;

/i, æ/, 16.67 cm) and the radiation zone (RZ) protected by

2–3 PMLs with a thickness of 0.5 cm. PML is a technique

published first by Berenger (1994); the original method was

modified by Kaltenbacher et al. (2013) by adding damping

layers to guarantee that no wave reflections occur at

boundaries.

The geometry of the vocal tract was modeled from frus-

tums (0.397 cm long) that were concatenated one after

another. The shape of the frustums was defined according to

the vocal tract area function measured by MRI (Story et al.,
1996). About 33 000 hexahedral first-order finite elements

were used for each vowel.

The vocal tract was conformally attached to the larynx.

The connection is formed by two layers of hexahedral cells

with minor influence on wave propagation. The right patch

of the vocal tract was attached to the RZ.

The element length, Dla, of the coarse acoustic mesh

and time step, Dta, for the aeroacoustic simulation are given

by estimations, Dla � c0=ð20fmaxÞ and Dta � 1=ð20fmaxÞ,
assuming that 20 linear finite elements per 1 acoustic wave-

length are sufficient (H€uppe, 2012). In this case, the spatial

discretization is limited by 3:43 mm and time step is limited

by 1� 10�5 s to resolve properly acoustic frequencies up to

fmax ¼ 5 kHz.

The partial differential equation (19) for the acoustic

potential, wa, which is solved numerically in the acoustic

domain, is equipped with zero initial conditions and boundary

condition rwa � n ¼ 0; where n is the outward unit normal.

This boundary condition can be interpreted as a perfect reflec-

tion of a sound wave from a barrier; the condition is also

called “sound hard” (Schoder, 2018). In following CAA simu-

lations, the sound hard condition is applied at all of the solid

boundaries except the inflow and outflow, where PML is used.

C. Numerical solution

The numerical solution of the aeroacoustic problem

proceeds in the following steps (see Fig. 8):

• The unsteady flow field in the larynx is computed in

OpenFOAM on a fine CFD mesh over 20 periods of vocal

fold oscillation;

FIG. 6. (Color online) Turbulent viscosity, �t ðm2 s�1Þ, in the midsagittal

plane at tC and tO.

FIG. 7. (Color online) Acoustic mesh composed of the perfectly matched layers (PML), larynx, vocal tract, and radiation zone (RZ).
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• the sound sources in the larynx are computed by openCFS

and conservatively interpolated onto the coarse CAA

mesh, whereas the interpolation back to the fine original

CFD mesh is used to visualize the results in high resolu-

tion (Figs. 9–12), and
• in the last step, the aeroacoustic sources are conserva-

tively interpolated onto the coarse CAA mesh and the

wave propagation is simulated by openCFS.

The computational time needed for one CAA simula-

tion is much lower than that needed for one CFD simulation,

about 5 h on a single central processing unit (CPU) core

compared to 27–37 days on 20 cores. The conservative inter-

polation of sound sources (Schoder et al., 2019; Schoder

et al., 2020; Schoder et al., 2021b) from the CFD mesh to

the CAA mesh was performed by the cfsdat tool, which is

part of the openCFS library.

D. CAA results

1. Sound sources (time domain)

The distribution of the aeroacoustic sources in the com-

putational domain covering the larynx varies throughout the

vocal fold oscillation period. The jet is surrounded by spots

of strong positive and negative acoustic sources related to

turbulent eddies created from shear layers of the jet; see also

Schoder et al. (2021a). Figure 9 shows the aeroacoustic

sound source distribution corresponding to the closed-

convergent position of vocal folds, which are visualized on

the CFD mesh with the closed-divergent position of vocal

folds. The aeroacoustic sources computed on the moving

geometry with oscillating vocal folds are mapped to a fixed

geometry. This is performed because the current version of

the acoustic solver cannot handle moving meshes.

Figure 10 shows sound source distribution when vocal

folds are fully open, and the results are again mapped to the

FIG. 8. (Color online) Visualization of data interpolation during the whole

workflow.

FIG. 9. (Color online) Sound sources, Dpic=Dt, from Eq. (19) at time

instant, tC. Twenty iso-surfaces in the range 62� 105 Pa=s are displayed

as 3D (positive sources, purple; negative, green).

FIG. 10. (Color online) Sound sources, Dpic=Dt, from Eq. (19) at time

instant. tO, but mapped to the mesh with closed-divergent vocal folds posi-

tions (tC). Twenty iso-surfaces in the range 62� 105 Pa=s are displayed as

3D (positive sources, purple; negative, green).

FIG. 11. (Color online) Sound sources in the mid-coronal plane at the fun-

damental frequency, fo ¼ 100 Hz, and harmonic frequency, f9 ¼ 1000 Hz.
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closed-divergent domain. Strong sound sources within the

glottis and 1 cm from the glottis are observed. The 3D view

shows uniform distribution of sound sources in the glottis.

This can be caused by the presence of high turbulent

viscosity.

2. Sound sources (frequency domain)

The conversion from the time to frequency domain was

made by the field fast Fourier transform (field FFT), which

brings a better insight into the spatial distribution of the

sound sources at distinct frequencies. Figure 11 shows that

the results obtained from the LES without subgrid-scale

model (LAM) show slightly more intensive sound sources

within the glottis at fo ¼ 100 Hz than that at other cases.

This correlates with the flow rate amplitude, which is also

higher in the LAM case (see Fig. 2). On the other side, the

intensity of sound sources at f ¼ 1000 Hz is opposite, and

AMD is 2.5–4� higher compared to the others. At these

higher frequencies, dominant sound sources do not occur

within the glottis but in the places where the fast glottal jet

interacts with the ventricular folds and the slowly moving

recirculating air in the supraglottal volume.

Figure 12 shows sound sources at a random nonhar-

monic frequency, f ¼ 1235 Hz, where the sound sources are

distributed further downstream of the glottis. The integrity

of sound sources can be observed along with several local

sound spots at the superior edge of the vocal folds.

3. Wave propagation (time domain)

In the following, the acoustic pressure fields, paðx; tÞ,
will be analyzed as a solution of Eq. (19). The acoustic pres-

sure has been tracked at distances of 1 and 16 cm from the

lips to create audio recordings; see Fig. 13. Two PML layers

around the RZ damped the acoustic waves on walls properly

as no reflections are observed.

Table III compares individual cases in terms of pa
rms

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=TÞ

Ð T
0
ðpaÞ2dt

q
and SPL ¼ 20 log10ðpa

rms=pa
refÞ, where

pa
ref ¼ 20 lPa is the hearing threshold. The total sound pres-

sure level (SPL) value of the radiated sound can be used as a

measure of the acoustic energy transferred from the larynx

through the vocal tract. Minor differences in SPL are observed

between the back close vowel, /u/, and front open vowel, /A/.

The simulations of front open/mid vowel, /æ/, transferred most

energy of all of the simulated vowels. The simulations based

on the AMD model predicted the highest or similar SPLs of all

of the vowels, except the front-close vowel, /i/. This may lead

to the conclusion that WALE model can transfer more energy

in simulations with the close vowels.

4. Wave propagation (frequency domain)

This section deals with frequency spectra of simulated

signals. This kind of analysis can highlight fundamental,

harmonic, and nonharmonic frequencies, which are accom-

panied by broadband noise. The FFT analyses were per-

formed on the signal spanning over 20 periods of the vocal

fold oscillation (1 period¼ 10 ms¼ 1000 samples) and,

thus, the frequency resolution is Df ¼ 5 Hz.

Influence of the end of the vocal tract (lips) was tested first,

comparing two signals at 1 and 16 cm; see Fig. 14. At 16 cm,

the SPLs on all of the frequency components are uniformly

lower by 19 dB. Our model of phonation prescribing 350 Pa at

inlet of the larynx can be considered to be quiet phonation

while, in the other case, it is recommended to use a probe for

tracking a signal at least 3 cm from the lips. The envelope over-

laying black peaks corresponds to the linear predictive coding

(LPC) curve (Pavlidi et al., 2013), which is widely used to

FIG. 12. (Color online) Sound sources at a nonharmonic frequency,

f ¼ 1235 Hz.

FIG. 13. (Color online) Acoustic wave propagation in the radiation field

after three periods of vocal folds oscillation.

TABLE III. Root-mean-square acoustic pressures, pa
rms (Pa), and total sound

pressure levels, SPLs (dB), tracked at 16 cm.

Case pa
rms SPL pa

rms SPL pa
rms SPL

LAM A 0.0031 43.69 æ 0.0052 48.37 i 0.0026 42.12

OE A 0.0016 37.89 æ 0.0021 40.45 i 0.0011 35.16

WALE A 0.0028 42.80 æ 0.0049 47.84 i 0.0022 40.68

AMD A 0.0032 44.13 æ 0.0051 48.12 i 0.0016 38.01

LAM o 0.0019 39.48 u 0.0019 39.69

OE o 0.0016 38.31 u 0.0013 36.58

WALE o 0.0018 38.89 u 0.0017 38.43

AMD o 0.0026 42.23 u 0.0018 39.22
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provide a smooth spectral envelope of audio and voice record-

ings for the purpose of finding positions of formants.

In the following, the frequency spectra at the distance

of 16 cm will be analyzed vowel by vowel, and the influence

of the subgrid-scale models will be investigated. Note that

the LES without subgrid-scale model (LAM) should be con-

sidered as the least accurate case, which disregards the

effect of small-scale turbulence. However, this approach is

often still used in the modeling of laryngeal flow, and the

comparison against more accurate LESs is interesting.

a. Vowel /A/. The spectrum is presented in Fig. 15,

where SPLs at fundamental frequency, fo ¼ 100 Hz, and

higher harmonics, f1 ¼ 200 Hz; f2 ¼ 300 Hz, and so forth

are well visible. Peaks at fo are lower than those at f1 and f2.

If the signal is processed immediately behind the vocal

folds, the SPL at fo is definitely the highest, whereas the sig-

nal tracked in RZ includes the effect of the vocal tract for

vowel /A/. The peaks (formants) are key parameters, which

define a vowel. The close distance between the first two for-

mants, F1–F2, is typical for vowels /A, o, u/. It should be

noted that the first two formants are important for vowel dis-

tinctness. The AMD model resulted in the higher peak at the

first formant around 900 Hz by 8 dB and, thus, contributes to

the better vowel clarity compared to other models.

b. Vowel /æ/. Figure 16 shows the frequency spectrum

for this front and open vowel, /æ/, and corresponds to the high-

est total SPL from all of the simulated vowels, up to 48 dB.

c. Vowel /i/. The frequency spectrum for this front and

close vowel is plotted in Fig. 17. The spectrum shows that

the simulations with OE predicted the lowest total SPL

(around 35 dB), which is related to the well-known overpre-

dicting of turbulent viscosity by the OE model and can be

observed in all of the spectra.

d. Vowel /o/. Figure 18 shows the frequency spectrum

for this back and mid-close vowel for which it is typical that

F2–F3 are far apart. Simulations based on WALE predicted

the most visible third formant of all of the vowels. To distin-

guish vowels, human ears are most sensitive to the two low-

est formants. For that reason, the AMD model can be more

valuable for voice research.

e. Vowel /u/. The frequency spectrum for this back and

close vowel is in Fig. 19. The spectrum shows that the second

formant of the LAM case at 1100 Hz is higher by 8 dB com-

pared to the second formants of the WALE and AMD.

However, the audio recording from the simulation with LAM

is subjectively not much clearer compared to the others.

The formant locations, F1–F2, computed from local

maxima of the LPC curves in Figs. 15–19, are compared

with measurements of natural speech by Ireland et al.
(2015), Peterson and Barney (1952), and Story et al. (1996)

in Fig. 20. All of the simulated vowels lie inside of the mea-

sured ranges, which confirms the usability of the acoustic

grids based on the circular cross sections.

FIG. 14. (Color online) Two frequency spectra of vocalization of /A/ at the

distance of 1 cm and 16 cm from the lips.

FIG. 15. (Color online) Four frequency spectra of vocalization of /A/ at

16 cm from the lips.

FIG. 16. (Color online) Four frequency spectra of vocalization of /æ/ at

16 cm from the lips.

FIG. 17. (Color online) Four frequency spectra of vocalization of /i/ at

16 cm from the lips.
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Readers can assess the clarity of simulated vowels by

downloading the audio recordings.2 Please note that for

comfortable, listening recordings at the distance of 1 cm

from the lips were used.

IV. CONCLUSION

In this article, models of phonation based on LESs with

subgrid-scale models contributing to the solution of turbu-

lent flow were presented. It was shown that the OE model

overpredicts the turbulent viscosity in the boundary layer

adjacent to the vocal folds and shear layers of the glottal jet

(Fig. 5). The difference in glottal flow rate among the simu-

lations is clearly induced by the subgrid-scale model, which

adds the turbulent viscosity to the molecular viscosity of air

and hinders the airflow in the glottis (Fig. 2). The WALE

model produced zero eddy viscosity in cases of pure shear

flow (Fig. 6) and, hence, the flow simulation with WALE

predicted by 5% higher the maximum transglottal flow rate

than did AMD. Despite this fact, the phonation simulation

based on the AMD model transferred more or equal energy

in terms of total SPL than WALE for all of the vowels

except the front-close vowel, /i/ (Table III). The WALE

model, which is known to handle turbulent viscosity at the

near-wall and high-shear regions more precisely than the

OE model (Figs. 5 and 6), resulted in higher total SPLs than

OE in all of the cases (Table III). The OE model gives

acceptable results, in general, but peaks of frequency

formants are hardly visible and weaker compared to the

WALE or AMD models (Figs. 16–19). The WALE model

resulted in higher third formants in high-frequency band-

width, most of all, for the subgrid-scale models (Figs.

16–19). However, the third formant is not crucial for vowel

characterization. On the other side, the AMD model resulted

in slightly higher SPLs at harmonic and formant frequencies

up to the second formant for all of the vowels (Figs. 16–19).

First formants are higher in cases /A, æ/ at least by 8 dB

(Figs. 15 and 16). These positive findings can be attributed

to beneficial features of the AMD model: consistency with

the exact subgrid-scale stress tensor, sij, no requirements on

the approximation of the LES filter width, and usability on

anisotropic meshes.

Based on recordings of simulated vowels, it can be con-

cluded that the model of phonation employing the AMD

subgrid-scale model is much closer to natural speech than large-

eddy simulations with conventional subgrid-scale models.

ACKNOWLEDGMENTS

The research was supported by the Student Grant Scheme

at the Technical University of Liberec through Project No.

SGS-2022-3016. The Graz group acknowledges support from

the €OAW research grant “Understanding voice disorders,”

received from Dr. Anton Oelzelt-Newin’sche Stiftung.

1See https://gitlab.com/mlasota/myFoam (Last viewed January 21, 2023).
2See supplementary material at https://www.scitation.org/doi/suppl/

10.1121/10.0017202 to download the (.wav) recordings of simulated vow-

els sorted by different subgrid-scale models.

Agarwal, M., Scherer, R., and Hollien, H. (2003). “The false vocal folds:

Shape and size in frontal view during phonation based on laminagraphic

tracings,” J. Voice 17(2), 97–113.

Anghel, M.-A., and Iacobescu, F. (2013). “The influence of temperature

and co2 in exhaled breath,” in 16th International Congress of Metrology,

EDP Sciences, p. 10012.

Avhad, A., Li, Z., Wilson, A., Sayce, L., Chang, S., Rousseau, B., and Luo,

H. (2022). “Subject-specific computational fluid-structure interaction

modeling of rabbit vocal fold vibration,” Fluids 7(3), 97.

Berenger, J.-P. (1994). “A perfectly matched layer for the absorption of

electromagnetic waves,” J. Comput. Phys. 114(2), 185–200.

FIG. 19. (Color online) Four frequency spectra of vocalization of /u/ at

16 cm from the lips.

FIG. 20. (Color online) Formant ranges measured by Peterson and Barney

(1952) and formant locations obtained by Story et al. (1996) and Ireland

et al. (2015) are compared with the simulated formants.

FIG. 18. (Color online) Four frequency spectra of vocalization of /o/ at

16 cm from the lips.

1062 J. Acoust. Soc. Am. 153 (2), February 2023 Lasota et al.

https://doi.org/10.1121/10.0017202

https://gitlab.com/mlasota/myFoam
https://www.scitation.org/doi/suppl/10.1121/10.0017202
https://www.scitation.org/doi/suppl/10.1121/10.0017202
https://doi.org/10.1016/S0892-1997(03)00012-2
https://doi.org/10.3390/fluids7030097
https://doi.org/10.1006/jcph.1994.1159
https://doi.org/10.1121/10.0017202


Bodaghi, D., Jiang, W., Xue, Q., and Zheng, X. (2021). “Effect of supra-

glottal acoustics on fluid-structure interaction during human voice

production,” J. Biomech. Eng. 143(4), 041010.

D€ollinger, M., Kobler, J. A., Berry, D., Mehta, D., Luegmair, G., and Bohr,

C. (2011). “Experiments on analysing voice production: Excised (human,

animal) and in vivo (animal) approaches,” Curr. Bioinform. 6(3), 286–304.

Erath, B., and Plesniak, M. (2010). “An investigation of asymmetric flow

features in a scaled-up driven model of the human vocal folds,” Exp.

Fluids 49(1), 131–146.

Falk, S., Kniesburges, S., Schoder, S., Jakubaß, B., Maurerlehner, P.,

Echternach, M., Kaltenbacher, M., and D€ollinger, M. (2021). “3D-FV-FE

aeroacoustic larynx model for investigation of functional based voice dis-

orders,” Front. Physiol. 12, 226.

Ferziger, H. (1998). “Direct and large eddy simulation of turbulence,”

Numer. Methods Fluid Mech. 16, 53–73.

Ffowcs Williams, J. E., and Hawkings, D. L. (1969). “Sound generation by

turbulence and surfaces in arbitrary motion,” Philos. Trans. R. Soc.

London, Ser. A, Math. Phys. Sci. 264(1151), 321–342.

Fletcher, C. A. J. (2012). Computational Techniques for Fluid Dynamics 2:
Specific Techniques for Different Flow Categories (Springer Science &

Business Media).

Georgiadis, N. J., Rizzetta, D. P., and Fureby, C. (2010). “Large-eddy simu-

lation: Current capabilities, recommended practices, and future research,”

AIAA J. 48(8), 1772–1784.

H€uppe, A. (2012). “Spectral finite elements for acoustic field computation,”

Ph.D. thesis, Alps-Adriatic University of Klagenfurt.

H€uppe, A., Grabinger, J., Kaltenbacher, M., Reppenhagen, A., Dutzler, G.,

and K€uhnel, W. (2014). “A non-conforming finite element method for

computational aeroacoustics in rotating systems,” in 20th AIAA/CEAS
Aeroacoustics Conference, p. 2739.

Ireland, D., Knuepffer, C., and McBride, S. J. (2015). “Adaptive multi-rate

compression effects on vowel analysis,” Front. Bioeng. Biotechnol. 3, 118.

Jasak, H. (1996). “Error analysis and estimation for the finite volume

method with applications to fluid flows,” Ph.D. thesis, Imperial College

London.

Jiang, X., and Lai, C.-H. (2016). Numerical Techniques for Direct and
Large-Eddy Simulations (CRC Press, Boca Raton, FL).

Kaltenbacher, B., Kaltenbacher, M., and Sim, I. (2013). “A modified and

stable version of a perfectly matched layer technique for the 3-d second

order wave equation in time domain with an application to aeroacoustics,”

J. Comput. Phys. 235, 407–422.

Kniesburges, S. L., Thomson, S., Barney, A., Triep, M., �Sidlof, P.,
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